2020-04-02 11:27:27
MATEMATIKA, 2.4.2020.Danas drugi dio onoga od jučer. Jučer su nam baze bili trokuti, a danas četverokuti ili bilo koji mnogokuti. Vidjet ćete da nije puno teže od jučerašnjeg. Samo zapamti izraze O=2B+P i V=B*v (V je obujam) gdje P računamo po izrazu P=ob*v -->ob je opseg baze
- otvori https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/d2d61772-7e7a-4f5b-98f9-6bbb5d5d13ca/html/10668_Ostale_prizme.html
- napiši podnaslov Četverostrane prizme - baza jednakokračni trapez
- pokreni interakciju --> pomiči točke B, C i D i klizač nakon toga da dobiješ mrežu prizme
- pogledati primjer 4. i otvorite rješenje
- precrtaj prizmu, njenu mrežu, posebno istakni bazu i ispiši formulu za njenu površinu
- riješi zadatak 7. --> za zaboravne osnovice trapeza označavaš sa a i c
- riješi zadatak 9.
- riješi iz udžbenika na stranici 136., 65. zadatak -->prepoznaj visinu prizme!
- 65. a --> uoči da je baza jednakokračan trapez --> ispiši si što je zadano-->a,c,b,v -->isto kao zadatak 7.
- 65.c --> isto kao zadatak 7. osim što je opseg baze a+b+c+d, a ne a+2b+c
- 65.b --> baza je križ, podijeli ga na kvadrate i lako ćeš odrediti površinu baze(površina jednog kvadrata*5)--> opseg baze lako(valjda znamo zbrojiti stranice križa)
Poslati mi slike zaslona interakcije i zadatka 9. te zapis iz bilježnice na pregled.
Za učenike koji pohađaju nastavu po prilagođenom programu: Danas drugi dio onoga od jučer. Jučer su nam baze bili trokuti, a danas četverokuti ili bilo koji mnogokuti. Vidjet ćete da nije puno teže od jučerašnjeg. Samo zapamti izraze O=2B+P i V=B*v (V je obujam) gdje P računamo po izrazu P=ob*v -->ob je opseg baze
- otvori https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/d2d61772-7e7a-4f5b-98f9-6bbb5d5d13ca/html/10668_Ostale_prizme.html
- napiši podnaslov Četverostrane prizme - baza jednakokračni trapez
- pokreni interakciju --> pomiči točke B, C i D i klizač nakon toga da dobiješ mrežu prizme
- pogledati primjer 4. i otvorite rješenje
- precrtaj prizmu, njenu mrežu, posebno istakni bazu i ispiši formulu za njenu površinu
- riješi zadatak 9.
Poslati mi slike zaslona interakcije i zadatka 9. te zapis iz bilježnice na pregled.
|